首页 技术 正文
技术 2022年11月18日
0 收藏 791 点赞 3,493 浏览 6504 个字

CW攻击原论文地址——https://arxiv.org/pdf/1608.04644.pdf

1.CW攻击的原理

  CW攻击是一种基于优化的攻击,攻击的名称是两个作者的首字母。首先还是贴出攻击算法的公式表达:

4 基于优化的攻击——CW

 下面解释下算法的大概思想,该算法将对抗样本当成一个变量,那么现在如果要使得攻击成功就要满足两个条件:(1)对抗样本和对应的干净样本应该差距越小越好;(2)对抗样本应该使得模型分类错,且错的那一类的概率越高越好。

  其实上述公式的两部分loss也就是基于这两点而得到的,首先说第一部分,rn对应着干净样本和对抗样本的差,但作者在这里有个小trick,他把对抗样本映射到了tanh空间里面,这样做有什么好处呢?如果不做变换,那么x只能在(0,1)这个范围内变换,做了这个变换 ,x可以在-inf到+inf做变换,有利于优化。

再来说说第二部分,公式中的Z(x)表示的是样本x通过模型未经过softmax的输出向量,对于干净的样本来说,这个这个向量的最大值对应的就是正确的类别(如果分类正确的话),现在我们将类别t(也就是我们最后想要攻击成的类别)所对应的逻辑值记为4 基于优化的攻击——CW,将最大的值(对应类别不同于t)记为4 基于优化的攻击——CW,如果通过优化使得4 基于优化的攻击——CW变小,攻击不就离成功了更近嘛。那么式子中的k是什么呢?k其实就是置信度(confidence),可以理解为,k越大,那么模型分错,且错成的那一类的概率越大。但与此同时,这样的对抗样本就更难找了。最后就是常数c,这是一个超参数,用来权衡两个loss之间的关系,在原论文中,作者使用二分查找来确定c值。

  下面总结一下CW攻击:

  CW是一个基于优化的攻击,主要调节的参数是c和k,看你自己的需要了。它的优点在于,可以调节置信度,生成的扰动小,可以破解很多的防御方法,缺点是,很慢~~~

  最后在说一下,就是在某些防御论文中,它实现CW攻击,是直接用4 基于优化的攻击——CW替换PGD中的loss,其余步骤和PGD一模一样。

2.CW代码实现

class CarliniWagnerL2Attack(Attack, LabelMixin):    def __init__(self, predict, num_classes, confidence=0,
targeted=False, learning_rate=0.01,
binary_search_steps=9, max_iterations=10000,
abort_early=True, initial_const=1e-3,
clip_min=0., clip_max=1., loss_fn=None):
"""
Carlini Wagner L2 Attack implementation in pytorch Carlini, Nicholas, and David Wagner. "Towards evaluating the
robustness of neural networks." 2017 IEEE Symposium on Security and
Privacy (SP). IEEE, 2017.
https://arxiv.org/abs/1608.04644 learning_rate: the learning rate for the attack algorithm
max_iterations: the maximum number of iterations
binary_search_steps: number of binary search times to find the optimum
abort_early: if set to true, abort early if getting stuck in local min
confidence: confidence of the adversarial examples
targeted: TODO
""" if loss_fn is not None:
import warnings
warnings.warn(
"This Attack currently do not support a different loss"
" function other than the default. Setting loss_fn manually"
" is not effective."
) loss_fn = None super(CarliniWagnerL2Attack, self).__init__(
predict, loss_fn, clip_min, clip_max) self.learning_rate = learning_rate
self.max_iterations = max_iterations
self.binary_search_steps = binary_search_steps
self.abort_early = abort_early
self.confidence = confidence
self.initial_const = initial_const
self.num_classes = num_classes
# The last iteration (if we run many steps) repeat the search once.
self.repeat = binary_search_steps >= REPEAT_STEP
self.targeted = targeted def _loss_fn(self, output, y_onehot, l2distsq, const):
# TODO: move this out of the class and make this the default loss_fn
# after having targeted tests implemented
real = (y_onehot * output).sum(dim=1) # TODO: make loss modular, write a loss class
other = ((1.0 - y_onehot) * output - (y_onehot * TARGET_MULT)
).max(1)[0]
# - (y_onehot * TARGET_MULT) is for the true label not to be selected if self.targeted:
loss1 = clamp(other - real + self.confidence, min=0.)
else:
loss1 = clamp(real - other + self.confidence, min=0.)
loss2 = (l2distsq).sum()
loss1 = torch.sum(const * loss1)
loss = loss1 + loss2
return loss def _is_successful(self, output, label, is_logits):
# determine success, see if confidence-adjusted logits give the right
# label if is_logits:
output = output.detach().clone()
if self.targeted:
output[torch.arange(len(label)), label] -= self.confidence
else:
output[torch.arange(len(label)), label] += self.confidence
pred = torch.argmax(output, dim=1)
else:
pred = output
if pred == INVALID_LABEL:
return pred.new_zeros(pred.shape).byte() return is_successful(pred, label, self.targeted) def _forward_and_update_delta(
self, optimizer, x_atanh, delta, y_onehot, loss_coeffs): optimizer.zero_grad()
adv = tanh_rescale(delta + x_atanh, self.clip_min, self.clip_max)
transimgs_rescale = tanh_rescale(x_atanh, self.clip_min, self.clip_max)
output = self.predict(adv)
l2distsq = calc_l2distsq(adv, transimgs_rescale)
loss = self._loss_fn(output, y_onehot, l2distsq, loss_coeffs)
loss.backward()
optimizer.step() return loss.item(), l2distsq.data, output.data, adv.data def _get_arctanh_x(self, x):
result = clamp((x - self.clip_min) / (self.clip_max - self.clip_min),
min=self.clip_min, max=self.clip_max) * 2 - 1
return torch_arctanh(result * ONE_MINUS_EPS) def _update_if_smaller_dist_succeed(
self, adv_img, labs, output, l2distsq, batch_size,
cur_l2distsqs, cur_labels,
final_l2distsqs, final_labels, final_advs): target_label = labs
output_logits = output
_, output_label = torch.max(output_logits, 1) mask = (l2distsq < cur_l2distsqs) & self._is_successful(
output_logits, target_label, True) cur_l2distsqs[mask] = l2distsq[mask] # redundant
cur_labels[mask] = output_label[mask] mask = (l2distsq < final_l2distsqs) & self._is_successful(
output_logits, target_label, True)
final_l2distsqs[mask] = l2distsq[mask]
final_labels[mask] = output_label[mask]
final_advs[mask] = adv_img[mask] def _update_loss_coeffs(
self, labs, cur_labels, batch_size, loss_coeffs,
coeff_upper_bound, coeff_lower_bound): # TODO: remove for loop, not significant, since only called during each
# binary search step
for ii in range(batch_size):
cur_labels[ii] = int(cur_labels[ii])
if self._is_successful(cur_labels[ii], labs[ii], False):
coeff_upper_bound[ii] = min(
coeff_upper_bound[ii], loss_coeffs[ii]) if coeff_upper_bound[ii] < UPPER_CHECK:
loss_coeffs[ii] = (
coeff_lower_bound[ii] + coeff_upper_bound[ii]) / 2
else:
coeff_lower_bound[ii] = max(
coeff_lower_bound[ii], loss_coeffs[ii])
if coeff_upper_bound[ii] < UPPER_CHECK:
loss_coeffs[ii] = (
coeff_lower_bound[ii] + coeff_upper_bound[ii]) / 2
else:
loss_coeffs[ii] *= 10 def perturb(self, x, y=None):
x, y = self._verify_and_process_inputs(x, y) # Initialization
if y is None:
y = self._get_predicted_label(x)
x = replicate_input(x)
batch_size = len(x)
coeff_lower_bound = x.new_zeros(batch_size)
coeff_upper_bound = x.new_ones(batch_size) * CARLINI_COEFF_UPPER
loss_coeffs = torch.ones_like(y).float() * self.initial_const
final_l2distsqs = [CARLINI_L2DIST_UPPER] * batch_size
final_labels = [INVALID_LABEL] * batch_size
final_advs = x
x_atanh = self._get_arctanh_x(x)
y_onehot = to_one_hot(y, self.num_classes).float() final_l2distsqs = torch.FloatTensor(final_l2distsqs).to(x.device)
final_labels = torch.LongTensor(final_labels).to(x.device) # Start binary search
for outer_step in range(self.binary_search_steps):
delta = nn.Parameter(torch.zeros_like(x))
optimizer = optim.Adam([delta], lr=self.learning_rate)
cur_l2distsqs = [CARLINI_L2DIST_UPPER] * batch_size
cur_labels = [INVALID_LABEL] * batch_size
cur_l2distsqs = torch.FloatTensor(cur_l2distsqs).to(x.device)
cur_labels = torch.LongTensor(cur_labels).to(x.device)
prevloss = PREV_LOSS_INIT if (self.repeat and outer_step == (self.binary_search_steps - 1)):
loss_coeffs = coeff_upper_bound
for ii in range(self.max_iterations):
loss, l2distsq, output, adv_img = \
self._forward_and_update_delta(
optimizer, x_atanh, delta, y_onehot, loss_coeffs)
if self.abort_early:
if ii % (self.max_iterations // NUM_CHECKS or 1) == 0:
if loss > prevloss * ONE_MINUS_EPS:
break
prevloss = loss self._update_if_smaller_dist_succeed(
adv_img, y, output, l2distsq, batch_size,
cur_l2distsqs, cur_labels,
final_l2distsqs, final_labels, final_advs) self._update_loss_coeffs(
y, cur_labels, batch_size,
loss_coeffs, coeff_upper_bound, coeff_lower_bound) return final_advs

  

相关推荐
python开发_常用的python模块及安装方法
adodb:我们领导推荐的数据库连接组件bsddb3:BerkeleyDB的连接组件Cheetah-1.0:我比较喜欢这个版本的cheeta…
日期:2022-11-24 点赞:878 阅读:9,082
Educational Codeforces Round 11 C. Hard Process 二分
C. Hard Process题目连接:http://www.codeforces.com/contest/660/problem/CDes…
日期:2022-11-24 点赞:807 阅读:5,557
下载Ubuntn 17.04 内核源代码
zengkefu@server1:/usr/src$ uname -aLinux server1 4.10.0-19-generic #21…
日期:2022-11-24 点赞:569 阅读:6,406
可用Active Desktop Calendar V7.86 注册码序列号
可用Active Desktop Calendar V7.86 注册码序列号Name: www.greendown.cn Code: &nb…
日期:2022-11-24 点赞:733 阅读:6,179
Android调用系统相机、自定义相机、处理大图片
Android调用系统相机和自定义相机实例本博文主要是介绍了android上使用相机进行拍照并显示的两种方式,并且由于涉及到要把拍到的照片显…
日期:2022-11-24 点赞:512 阅读:7,815
Struts的使用
一、Struts2的获取  Struts的官方网站为:http://struts.apache.org/  下载完Struts2的jar包,…
日期:2022-11-24 点赞:671 阅读:4,898