首页 技术 正文
技术 2022年11月21日
0 收藏 450 点赞 4,764 浏览 2278 个字

Warming Up

Before we talk about multivariate Gaussian, let’s first review univariate Gaussian, which is usually called "Normal Distribution":
\[
X \sim N(\mu,\ \sigma^2) = \frac{1}{\sqrt{2\pi}\sigma} e^{ -\frac{(x-\mu)^2}{2\sigma^2}}
\]
where \(\mu=\mathbb{E}(X)\), \(\sigma = \mathrm{var}(X)\).

Now, if we have bivariate form of \(X = [x_1\ x_2]\), and also assume \(x_1\) and \(x_2\) are statistically independent, then we can get the joint distribution:
\[
\begin{align*}\notag
\mathrm{P}(x_1,x_2) &= \mathrm{P}(x_1)\mathrm{P}(x_2) \\
&=\frac{1}{\sqrt{2\pi}\sigma} e^{ -\frac{(x_1-\mu_1)^2}{2\sigma^2}} \frac{1}{\sqrt{2\pi}\sigma} e^{ -\frac{(x_2-\mu_2)^2}{2\sigma^2}} \\
&= \frac{1}{\left( \sqrt{2\pi} \sigma \right)^2} \exp \left\{ -\frac{(x_1-\mu_1)^2}{2\sigma^2} – \frac{(x_2-\mu_2)^2}{2\sigma^2} \right\} \\
&=\frac{1}{\left( \sqrt{2\pi} \sigma \right)^2} \exp \left\{ -\frac{1}{2} \left[ (x_1-\mu_1) \sigma^{-2} (x_1-\mu_1) + (x_2-\mu_2) \sigma^{-2} (x_2-\mu_2) \right] \right\}
\end{align*}
\]

Rewrite formula into matrix form:
\[
\frac{1}{\left( \sqrt{2\pi} \sigma \right)^2} \exp \left\{ -\frac{1}{2} \begin{bmatrix} (x_1-\mu_1)^\mathtt{T} \sigma^{-2} & (x_2-\mu_2)^\mathtt{T} \sigma^{-2} \end{bmatrix}
\begin{bmatrix}
(x_1-\mu_1) \\ (x_2-\mu_2)
\end{bmatrix} \right\} \\
= \frac{1}{\left( \sqrt{2\pi} \sigma \right)^2} \exp \left\{ -\frac{1}{2}
\begin{bmatrix} (x_1-\mu_1)^\mathtt{T} & (x_2-\mu_2)^\mathtt{T} \end{bmatrix}
\begin{bmatrix} \sigma^{-2} & 0 \\ 0 & \sigma^{-2} \end{bmatrix}
\begin{bmatrix} (x_1-\mu_1) \\ (x_2-\mu_2) \end{bmatrix}
\right\}
\]

Let \(\begin{bmatrix}\sigma^{-2} & 0 \\ 0 & \sigma^{-2}\end{bmatrix} = \Sigma^{-1},\mathbf{x}=\begin{bmatrix} x_1 \\ x_2 \end{bmatrix}, \mathbf{\mu}= \begin{bmatrix} \mu_1 \\ \mu_2 \end{bmatrix}\), then we also get \(\Sigma = \begin{bmatrix} \sigma^2 & 0 \\ 0 & \sigma^2 \end{bmatrix}\) and \(\det(\Sigma)=\sigma^4\). Plug \(\Sigma,\mathbf{x},\mathbf{\mu}\) in equation above and we obtain:
\[
\frac{1}{\left( \sqrt{2\pi} \right)^2 \det (\Sigma)^{1/2} } \exp \left\{ -\frac{1}{2}
(\mathbf{x-\mu})^\mathtt{T} \Sigma^{-1} (\mathbf{x-\mu}) \right\}
\]
This is exactly the probability density distribution (PDF) of bivariate Gaussian distribution.

Multivariate Gaussian Distribution

In general, the PDF of multivariate Gaussian distribution (a.k.a. multivariate normal distribution, MVN) is as below:
\[
\frac{1}{\left( \sqrt{2\pi} \right)^d \det (\Sigma)^{1/2} } \exp \left\{ \frac{1}{2}
(\mathbf{x-\mu})^\mathtt{T} \Sigma^{-1} (\mathbf{x-\mu}) \right\}
\]


Written with StackEdit.

相关推荐
python开发_常用的python模块及安装方法
adodb:我们领导推荐的数据库连接组件bsddb3:BerkeleyDB的连接组件Cheetah-1.0:我比较喜欢这个版本的cheeta…
日期:2022-11-24 点赞:878 阅读:9,077
Educational Codeforces Round 11 C. Hard Process 二分
C. Hard Process题目连接:http://www.codeforces.com/contest/660/problem/CDes…
日期:2022-11-24 点赞:807 阅读:5,552
下载Ubuntn 17.04 内核源代码
zengkefu@server1:/usr/src$ uname -aLinux server1 4.10.0-19-generic #21…
日期:2022-11-24 点赞:569 阅读:6,401
可用Active Desktop Calendar V7.86 注册码序列号
可用Active Desktop Calendar V7.86 注册码序列号Name: www.greendown.cn Code: &nb…
日期:2022-11-24 点赞:733 阅读:6,176
Android调用系统相机、自定义相机、处理大图片
Android调用系统相机和自定义相机实例本博文主要是介绍了android上使用相机进行拍照并显示的两种方式,并且由于涉及到要把拍到的照片显…
日期:2022-11-24 点赞:512 阅读:7,813
Struts的使用
一、Struts2的获取  Struts的官方网站为:http://struts.apache.org/  下载完Struts2的jar包,…
日期:2022-11-24 点赞:671 阅读:4,896