首页 技术 正文
技术 2022年11月6日
0 收藏 338 点赞 789 浏览 3005 个字

Codeforces 235E

原题
题目描述:设\(d(n)\)表示\(n\)的因子个数, 给定\(a, b, c\), 求:
\[\sum_{i=1}^{a} \sum_{j=1}^{b} \sum_{k=1}^{c} d(i \cdot j \cdot k) (mod 2^{30})\]

solution
rng_58 Orz,这方法太神了,rng_58证明了下面这条式子:
\[\sum_{i=1}^{a} \sum_{j=1}^{b} \sum_{k=1}^{c} d(i \cdot j \cdot k) =\sum_{(i, j)=(i, k)=(j, k)=1} \left \lfloor \frac{a}{i} \right \rfloor \left \lfloor \frac{b}{j} \right \rfloor \left \lfloor \frac{c}{k} \right \rfloor\]

证明

\[f(a, b, c)=\sum_{i=1}^{a} \sum_{j=1}^{b} \sum_{k=1}^{c} d(i \cdot j \cdot k) \]
\[g(a, b, c)=\sum_{(i, j)=(i, k)=(j, k)=1} \left \lfloor \frac{a}{i} \right \rfloor \left \lfloor \frac{b}{j} \right \rfloor \left \lfloor \frac{c}{k} \right \rfloor\]
由容斥原理可得(一式
\[d(i \cdot j \cdot k)=f(a, b, c)-f(a-1, b, c)-f(a, b-1, c)-f(a, b, c-1)+f(a-1, b-1, c)+f(a-1, b, c-1)+f(a, b-1, c-1)-f(a-1, b-1, c-1)\]
则若(二式
\[d(i \cdot j \cdot k)=g(a, b, c)-g(a-1, b, c)-g(a, b-1, c)-g(a, b, c-1)+g(a-1, b-1, c)+g(a-1, b, c-1)+g(a, b-1, c-1)-g(a-1, b-1, c-1)\]
则原命题得证。
二式\(=\)
\[\sum_{(i, j)=(i, k)=(j, k)=1} \left \lfloor \frac{a}{i} \right \rfloor \left \lfloor \frac{b}{j} \right \rfloor \left \lfloor \frac{c}{k} \right \rfloor -\left \lfloor \frac{a-1}{i} \right \rfloor \left \lfloor \frac{b}{j} \right \rfloor \left \lfloor \frac{c}{k} \right \rfloor – \left \lfloor \frac{a}{i} \right \rfloor \left \lfloor \frac{b-1}{j} \right \rfloor \left \lfloor \frac{c}{k} \right \rfloor – \left \lfloor \frac{a}{i} \right \rfloor \left \lfloor \frac{b}{j} \right \rfloor \left \lfloor \frac{c-1}{k} \right \rfloor + \left \lfloor \frac{a-1}{i} \right \rfloor \left \lfloor \frac{b-1}{j} \right \rfloor \left \lfloor \frac{c}{k} \right \rfloor +
\left \lfloor \frac{a-1}{i} \right \rfloor \left \lfloor \frac{b}{j} \right \rfloor \left \lfloor \frac{c-1}{k} \right \rfloor + \left \lfloor \frac{a}{i} \right \rfloor \left \lfloor \frac{b-1}{j} \right \rfloor \left \lfloor \frac{c-1}{k} \right \rfloor – \left \lfloor \frac{a-1}{i} \right \rfloor \left \lfloor \frac{b-1}{j} \right \rfloor \left \lfloor \frac{c-1}{k} \right \rfloor\]
\(=\)
\[\sum_{(i, j)=(i, k)=(j, k)=1} (\left \lfloor \frac{a}{i} \right \rfloor -\left \lfloor \frac{a-1}{i} \right \rfloor) (\left \lfloor \frac{b}{j} \right \rfloor – \left \lfloor \frac{b-1}{j} \right \rfloor) (\left \lfloor \frac{c}{k} \right \rfloor – \left \lfloor \frac{c-1}{k} \right \rfloor)\]
即只有当\((i, j)=(i, k)=(j, k)=1 , i|a, j|b, k|c\)时,和中的式子才等于\(1\),否则为\(0\).

设\(p_i\)为质因子,\(q_i\)为\(p_{i}^{q_i} \leq n\)的最大值,则\(n\)的因数个数为
\[\prod_{i} (q_i +1)\]

根据上述定义设类似\(q_i\)的定义对于\(a\)为\(x_i\), \(b\)为\(y_i\), \(c\)为\(z_i\)

对于\(p_i\),该质数的个数为\(x_i+y_i+z_i\),
因为\((i, j)=(i, k)=(j, k)=1 , i|a, j|b, k|c\), 对于\(p_i\), 答案为\((0, 0, 0)+(1 \text ~ x_i, 0, 0)+(0, 1 \text ~ y_i, 0)+(0, 0, 1 \text ~ z_i)=x_i+y_i+z_i+1\)
所以二式=一式,即\(f(a, b, c)=g(a, b, c)\)
然后就可以用莫比乌斯的性质函数来解了。
\[\sum_{(i, j)=(i, k)=(j, k)=1} \left \lfloor \frac{a}{i} \right \rfloor \left \lfloor \frac{b}{j} \right \rfloor \left \lfloor \frac{c}{k} \right \rfloor\]
\[=\sum_{i} \left \lfloor \frac{a}{i} \right \rfloor \sum_{d=(j, k)} \epsilon(d) \left \lfloor \frac{b}{j} \right \rfloor \left \lfloor \frac{c}{k} \right \rfloor\]
\[=\sum_{i} \left \lfloor \frac{a}{i} \right \rfloor \sum_{d} \mu(d) \left \lfloor \frac{b}{j'd} \right \rfloor \left \lfloor \frac{c}{k'd} \right \rfloor\]
因为\(i\)与\(d, j', k'\)都有关联,所以只好枚举
枚举\(i\),枚举\(d\),然后分别枚举\(j'\), \(k'\),然后相乘,时间复杂度为:\(O(n^2ln\) \(n)\)

相关推荐
python开发_常用的python模块及安装方法
adodb:我们领导推荐的数据库连接组件bsddb3:BerkeleyDB的连接组件Cheetah-1.0:我比较喜欢这个版本的cheeta…
日期:2022-11-24 点赞:878 阅读:9,115
Educational Codeforces Round 11 C. Hard Process 二分
C. Hard Process题目连接:http://www.codeforces.com/contest/660/problem/CDes…
日期:2022-11-24 点赞:807 阅读:5,587
下载Ubuntn 17.04 内核源代码
zengkefu@server1:/usr/src$ uname -aLinux server1 4.10.0-19-generic #21…
日期:2022-11-24 点赞:569 阅读:6,433
可用Active Desktop Calendar V7.86 注册码序列号
可用Active Desktop Calendar V7.86 注册码序列号Name: www.greendown.cn Code: &nb…
日期:2022-11-24 点赞:733 阅读:6,204
Android调用系统相机、自定义相机、处理大图片
Android调用系统相机和自定义相机实例本博文主要是介绍了android上使用相机进行拍照并显示的两种方式,并且由于涉及到要把拍到的照片显…
日期:2022-11-24 点赞:512 阅读:7,840
Struts的使用
一、Struts2的获取  Struts的官方网站为:http://struts.apache.org/  下载完Struts2的jar包,…
日期:2022-11-24 点赞:671 阅读:4,925