首页 技术 正文
技术 2022年11月12日
0 收藏 654 点赞 2,949 浏览 1979 个字

题意

给你 \(n\) 个完全相同骰子,每个骰子有 \(k\) 个面,分别标有 \(1\) 到 \(k\) 的所有整数。对于\([2,2k]\) 中的每一个数 \(x\) 求出有多少种方案满足任意两个骰子的和都不为 \(x\) 的方案数。

分析

  • 对于每个 \(x\) ,考虑当 \(i\le x\) 时, \(i\) 和 \(x-i\) 只能出现一个。将他们看成同一种权值,数量记为 \(w\) ,剩余权值数量记位 \(cnt\) ,然后枚举有多少种特殊权值没出现 (\(ans\)) 并容斥:

\[ans_i=2^{w-i}\sum\limits_{j=i}^w(-1)^{j-i}\binom{n+cnt-j-1}{cnt-j-1}\binom{w}{j}\binom{j}{i}
\]

这样可以 \(O(n^3)\) 求解。

  • 考虑枚举 \(ans\) 的过程中和 \(j\) 这一项有关的内容:

    \[\begin{aligned}val_j&=\sum_\limits{i=0}^j(-1)^{j-i}\binom{n+cnt-j-1}{cnt-j-1}\binom{w}{j}\binom{j}{i}2^{w-i}\\&=(-1)^j\binom{w}{j}\binom{n+cnt-j-1}{cnt-j-1}2^w\sum_{i=0}^j\binom{j}{i}(-1)^{i}2^{-i}\\&=(-1)^j\binom{w}{j}\binom{n+cnt-j-1}{cnt-j-1}2^{w-j}\sum_{i=0}^j\binom{j}{i}(-1)^{i}2^{j-i}\\&=(-1)^j\binom{w}{j}\binom{n+cnt-j-1}{cnt-j-1}2^{w-j}(2-1)^j\end{aligned}
    \]

    可以 \(O(1)\) 求一个 \(val\) ,于是复杂度优化到了 \(O(n^2)\)

  • 注意当 \(x\) 为偶数时候单独讨论 \(\frac{x}{2}\) 这个权值。

代码

#include<bits/stdc++.h>
using namespace std;
typedef long long LL;
#define go(u) for(int i = head[u], v = e[i].to; i; i=e[i].lst, v=e[i].to)
#define rep(i, a, b) for(int i = a; i <= b; ++i)
#define pb push_back
#define re(x) memset(x, 0, sizeof x)
inline int gi() {
int x = 0,f = 1;
char ch = getchar();
while(!isdigit(ch)) { if(ch == '-') f = -1; ch = getchar();}
while(isdigit(ch)) { x = (x << 3) + (x << 1) + ch - 48; ch = getchar();}
return x * f;
}
template <typename T> inline void Max(T &a, T b){if(a < b) a = b;}
template <typename T> inline void Min(T &a, T b){if(a > b) a = b;}
const int N = 4007, mod = 998244353;
int n, K, ans;
int fac[N], invfac[N], inv[N], bin[N], suf0[N], suf1[N];
int C(int n, int m) {
if(n < m) return 0;
return 1ll * fac[n] * invfac[m] % mod * invfac[n - m] % mod;
}
void add(int &a, int b) {
a += b;if(a >= mod) a -= mod;
}
void solve(int n, int cnt, int w) {
for(int i = 0; i <= w; ++i)
add(ans, 1ll * (i & 1 ? mod - 1: 1) * C(n + cnt - i - 1, cnt - i - 1) % mod * C(w, i)% mod * bin[w - i] % mod);
}
int main() {
K = gi(), n = gi();
inv[1] = fac[0] = invfac[0] = 1, bin[0] = 1;
rep(i, 1, 4000) {
if(i ^ 1) inv[i] = 1ll * (mod - mod / i) * inv[mod % i] % mod;
fac[i] = 1ll * fac[i - 1] * i % mod;
invfac[i] = 1ll * invfac[i - 1] * inv[i] % mod;
bin[i] = 1ll * bin[i - 1] * 2 % mod;
}
rep(k, 2, 2 * K) {
ans = 0;
int w = min(k / 2, K - (k - 1) / 2), cnt = K - w;
if(k % 2 == 0 && K >= k / 2) {
solve(n, cnt, w - 1);
solve(n - 1, cnt, w - 1);
}
else solve(n, cnt, w);
printf("%d\n", ans);
}
return 0;
}
相关推荐
python开发_常用的python模块及安装方法
adodb:我们领导推荐的数据库连接组件bsddb3:BerkeleyDB的连接组件Cheetah-1.0:我比较喜欢这个版本的cheeta…
日期:2022-11-24 点赞:878 阅读:9,082
Educational Codeforces Round 11 C. Hard Process 二分
C. Hard Process题目连接:http://www.codeforces.com/contest/660/problem/CDes…
日期:2022-11-24 点赞:807 阅读:5,557
下载Ubuntn 17.04 内核源代码
zengkefu@server1:/usr/src$ uname -aLinux server1 4.10.0-19-generic #21…
日期:2022-11-24 点赞:569 阅读:6,406
可用Active Desktop Calendar V7.86 注册码序列号
可用Active Desktop Calendar V7.86 注册码序列号Name: www.greendown.cn Code: &nb…
日期:2022-11-24 点赞:733 阅读:6,179
Android调用系统相机、自定义相机、处理大图片
Android调用系统相机和自定义相机实例本博文主要是介绍了android上使用相机进行拍照并显示的两种方式,并且由于涉及到要把拍到的照片显…
日期:2022-11-24 点赞:512 阅读:7,815
Struts的使用
一、Struts2的获取  Struts的官方网站为:http://struts.apache.org/  下载完Struts2的jar包,…
日期:2022-11-24 点赞:671 阅读:4,898