首页 技术 正文
技术 2022年11月14日
0 收藏 649 点赞 3,885 浏览 3999 个字

【题解】[HAOI2018]染色(NTT+容斥/二项式反演)

可以直接写出式子:

\[f(x)={m \choose x}n!{(\dfrac 1 {(Sx)!})}^x(m-x)^{n-Sx}\dfrac 1 {(n-Sx)!}
\]

\(f(x)\) 钦定有\(x\)种颜色出现了恰好\(S\)的方案

然后推一下恰好有\(x\)种颜色出现了恰好\(S\)次的方案\(g(x)\) 。推导在下下面。

最后的答案是\(\sum w_i g(i)\)

推导:

显然颜色种类不会超过\(L=\lfloor \dfrac n s \rfloor\) ,然后限制一下\(L\le n ,L\le m\)

先有关系式

\[f(x)=\sum_{i=x}^L {i\choose x}g(i)
\]

(恰好出现多次,会有\({i\choose x}\)被钦定的可能。)

再容斥(或者叫二项式反演?)得到

\[g(x)=\sum_{i=x}^L (-1)^{i-x}{i\choose x}f(i)
\]

解释一波这个容斥的含义

由于对于每个有\(u\)种颜色出现\(S\)的方案,有三种状态:

  • 当\(u\)少于目标\(x\)时:在\(f(x)\)中被计算了\(0\)次。

  • 当\(u\)等于目标\(x\)时:在\(f(x)\)中只被计算了\(1\)次。

  • 当\(u\)大于目标\(x\)时:

    考虑这个方案,在\(f(x)\)到\(f(u)\)之中分别计算了

    \[{u\choose x},{u\choose x+1},\dots{u\choose u}
    \]

    次,很像一个二项式定理展开。

    然后我们考虑一下\({x+i\choose x}f(x+i)\)的情况

    \[{u\choose x}{x\choose x},{u\choose x+1}{x+1\choose x},\dots{u\choose u}{u\choose x}
    \]

    晓得一个公式,那就是

    \[{a\choose b}{b\choose c}={a\choose c}{a-c\choose b-c}
    \]

    传送门:【总结】组合模型及其组合意义的阐释

    用这个公式化简一下上面那个式子

    \[\sum_{i=0}^{u-x}{u\choose x}{u-x\choose i}
    \]

    好家伙,右边就是一个二项式定理啊!

    继续化简

    \[={u\choose x}\sum_{i=0}^{u-x}{u-x\choose i}={u\choose x}(1+1)^{u-x}
    \]

    现在我们要让等式右边变成

    \[0={u\choose x}\times 0={u\choose x}(1-1)^{u-x}
    \]

    我们在\(f(i)\)前面乘上一个容斥系数即可。此时,\(u\le x\)的情况不受影响。

    \[\sum_{i=x}^L (-1)^{i-x}{i\choose x}f(i)=g(x)
    \]

然后我们把\(g(x)\)的式子化简一下

\[g(x)=\sum_{i=x}^L (-1)^{i-x}{i\choose x}f(i)=\sum_{i=x}^L (-1)^{i-x}\dfrac {i!} {(i-x)!x!}f(i)
\\
\therefore x!g(x)=\sum_{i=x}^L\dfrac {(-1)^{i-x}}{(i-x)!}\times i!f(i)
\]

拿出来

\[x!g(x)=\sum_{i=x}^L\dfrac {(-1)^{i-x}}{(i-x)!}\times i!f(i)
\]

我们把f数组带i!给reverse一下

现在问题就是快速求\(x!g(x)\)了,考虑到\(NTT\)实际上就是求\(c_i=\sum_{k+j=i}a_kb_j\)。套进NTT就好了。注意到这不是标准的NTT式子,所以个别地方微调。

人丑代码丑,不保证所有时刻可以AC

//@winlere
#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>using namespace std; typedef long long ll;
inline int qr(){
register int ret=0,f=0;
register char c=getchar();
while(c<48||c>57)f|=c==45,c=getchar();
while(c>=48&&c<=57) ret=ret*10+c-48,c=getchar();
return f?-ret:ret;
}namespace poly{
const int maxn=1<<18|1;
int a[maxn],b[maxn],A[maxn],B[maxn],r[maxn];
int savlen;
inline void getr(int len){
if(len==savlen)return;
int cnt=0;
for(register int t=1;t<len;t<<=1)++cnt;
for(register int t=1;t<len;++t)
r[t]=r[t>>1]>>1|(t&1)<<cnt>>1;
}
const int mod=1004535809;
const int g=3;
inline int ksm(int base,int p){
register int ret=1;
for(base%=mod;p;p>>=1,base=1ll*base*base%mod)
if(p&1) ret=1ll*ret*base%mod;
return ret;
}
const int gi=ksm(3,mod-2); inline void NTT(int*a,const int&len,const int&tag){
getr(len);
for(register int t=1;t<len;++t)
if(r[t]>t) swap(a[t],a[r[t]]);
int *a1,*a0,s=g;
if(tag!=1) s=gi;
for(register int t=1,wn;t<len;t<<=1){
wn=ksm(s,(mod-1)/(t<<1));
for(register int i=0;i<len;i+=t<<1){
a1=(a0=a+i)+t;
for(register int j=0,w=1,tm;j<t;++j,++a1,++a0,w=1ll*w*wn%mod){
tm=1ll**a1*w%mod;
*a1=(*a0-tm)%mod;
*a0=(*a0+tm)%mod;
if(*a1<0)*a1+=mod;
}
}
}
if(tag!=1)
for(register int t=0,in=ksm(len,mod-2);t<len;++t)
a[t]=1ll*a[t]*in%mod;
} void INV(int*a,int*b,const int&len){
if(len==1){b[0]=ksm(a[0],mod-2);return;}
INV(a,b,len>>1);
for(register int t=0;t<len;++t) A[t]=a[t],B[t]=b[t];
NTT(A,len<<1,1);NTT(B,len<<1,1);
for(register int t=0,w=len<<1;t<w;++t) A[t]=1ll*A[t]*B[t]%mod*B[t]%mod;
NTT(A,len<<1,-1);
for(register int t=0;t<len;++t) b[t]=((b[t]+b[t])%mod-A[t]+mod)%mod; }}
using poly::NTT;
using poly::mod;
using poly::ksm;
const int maxn=1e7+7;
int jc[maxn];
int inv[maxn];inline void pre(){
jc[0]=inv[0]=1;
for(register int t=1;t<maxn;++t)
jc[t]=1ll*jc[t-1]*t%mod;
inv[maxn-1]=ksm(jc[maxn-1],mod-2);
for(register int t=maxn-2;t;--t)
inv[t]=1ll*inv[t+1]*(t+1)%mod;
for(register int t=0;t<maxn;++t)
if(1ll*inv[t]*jc[t]%mod!=1) puts("WA");
}inline int c(const int&n,const int&m){
if(n<m)return 0;
return 1ll*jc[n]*inv[m]%mod*inv[n-m]%mod;
}int n,m,s,L;
int f[maxn];
int g[maxn];int main(){
#ifndef ONLINE_JUDGE
freopen("in.in","r",stdin);#endif
pre();
n=qr();m=qr();s=qr();
L=min(n/s,min(m,n));
for(register int t=0;t<=L;++t){
f[t]=1ll*c(m,t)*jc[n]%mod*ksm(m-t,n-s*t)%mod*inv[n-s*t]%mod*ksm(ksm(jc[s],t),mod-2)%mod*jc[t]%mod;
}
for(register int t=0;t<=L;++t){
g[t]=inv[L-t];
if((L-t)&1)g[t]=mod-g[t];
}
int k=1;
while(k<=L)k<<=1;
NTT(f,k<<1,1);
NTT(g,k<<1,1);
for(register int t=0;t<k<<1;++t) g[t]=1ll*g[t]*f[t]%mod;
NTT(g,k<<1,-1);
int ans=0;
for(register int t=0;t<=L;++t) ans=(ans+1ll*qr()*g[t+L]%mod*inv[t]%mod)%mod;
printf("%d\n",ans);
return 0;
}
相关推荐
python开发_常用的python模块及安装方法
adodb:我们领导推荐的数据库连接组件bsddb3:BerkeleyDB的连接组件Cheetah-1.0:我比较喜欢这个版本的cheeta…
日期:2022-11-24 点赞:878 阅读:9,086
Educational Codeforces Round 11 C. Hard Process 二分
C. Hard Process题目连接:http://www.codeforces.com/contest/660/problem/CDes…
日期:2022-11-24 点赞:807 阅读:5,561
下载Ubuntn 17.04 内核源代码
zengkefu@server1:/usr/src$ uname -aLinux server1 4.10.0-19-generic #21…
日期:2022-11-24 点赞:569 阅读:6,410
可用Active Desktop Calendar V7.86 注册码序列号
可用Active Desktop Calendar V7.86 注册码序列号Name: www.greendown.cn Code: &nb…
日期:2022-11-24 点赞:733 阅读:6,183
Android调用系统相机、自定义相机、处理大图片
Android调用系统相机和自定义相机实例本博文主要是介绍了android上使用相机进行拍照并显示的两种方式,并且由于涉及到要把拍到的照片显…
日期:2022-11-24 点赞:512 阅读:7,820
Struts的使用
一、Struts2的获取  Struts的官方网站为:http://struts.apache.org/  下载完Struts2的jar包,…
日期:2022-11-24 点赞:671 阅读:4,903