首页 技术 正文
技术 2022年11月15日
0 收藏 511 点赞 3,175 浏览 2290 个字

——————————————————————————————————————————————————————————————————————————

春节期间闲来无事想研究下算法,上机测试代码却遇到了意外错误,在此记录整个过程,祝各位新的一年在算法设计和故障排查方面的思维敏锐度媲美 dog 的

嗅觉!

——————————————————————————————————————————————————————————————————————————

整数 n 的阶乘(factorial)记作“n!”,比如要计算 5!,那么就是计算 5 * 4 * 3 * 2 * 1 = 120。

在 32 位系统上,“unsigned int(ULONG)”型变量能够持有的最大 10 进制值为 4,294,967,295(FFFF FFFF),意味着无符号数最多只能用来计算

12!(479,001,600 = 1C8C FC00);若计算 13!(6,227,020,800 = 1 7328 CC00)就会发生溢出。

类似地,“int”型变量能够持有的最大 10 进制值为 2,147,483,647(7FFF FFFF),意味着有符号数最多也只能用来计算

12!;若计算 13! 就会发生下溢(8000 0000 = -2,147,483,648)。

一般的编程范式通常以函数递归调用自身来实现阶乘计算,并在函数内部添加递归的终止条件。

下图是一种叫做“尾递归”的阶乘计算算法,从源码级别来看,它的巧妙之处在于第二个形参“computed_value”可以用来保存

本次递归的计算结果,然后作为下一次的输入。每次第一个参数“number”的值都递减,终止条件就是当它降到 1 时,即返回最新的 computed_value

值。“tail_recursivef_factorial()”开头的判断逻辑确保了我们不会因为计算 13! 或更大数的阶乘导致溢出:

作为对比,下图则是另一种“基本递归”的阶乘计算算法,“recursive_factorial()”只有一个形参,就是要计算阶乘的正整数。

前面的逻辑大致与 tail_recursivef_factorial() 相同,除了最后那条 return 语句,它把对自身的递归调用放进了一个表达式中,这种做法对性能的影响是

致命的,因为不得不等待递归调用终止才能完成整个表达式的求值计算:

————————————————————————————————————————————————————————————————————————————————————

假设我们忽略溢出的情况,或者在 64 位系统上执行这段代码,就可以传入更大的正整数。而从源码上看,recursive_factorial() 的性能严重依赖于输入

参数——试想要计算 100!,它可能需要反复地创建,销毁函数调用栈帧 100 次,才能完成表达式求值并返回。

反观 tail_recursivef_factorial(),因为它引入了一个额外变量存储每次调用的结果,从形式上而言与 for 循环并无太大区别,

“貌似”编译器可以优化这段代码来生成与 for 循环类似的汇编指令,从而避免函数调用造成的额外 CPU 时钟周期开销(反复的压栈弹栈都需要访问内

存)。

我们的美好愿望是:同样计算 100!,tail_recursivef_factorial() 无需多余的 99 次函数调用栈帧开销,在汇编级别直接用与类似 for 循环的迭代控制结构即可

实现相同效果,使得执行时间大幅缩短。

在后面的调试环节你会看到:这个“美好愿望”或许对其它编译器而言能够成立,对 Visual C/C++ 编译器而言则不行——它还不够智能来进行尾递归优化

(或称尾递归“消除”)。

做性能分析就需要计算两者的执行时间,我们使用内核例程“KeQuerySystemTime()”,分别在两个函数各自的调用前后获取一次当前系统时间,然后相减

得出差值,它就是两种阶乘计算算法的运行时间,如下图,注意黄框部分的逻辑,变量“execution_time_of_factorial_algorithm”存储它们各自的运行时

间:

图中以内联汇编添加的软件断点是为了方便观察 KeQuerySystemTime() 如何使用“LARGE_INTEGER”这个结构体:

原始文档写得很清楚—— KeQuerySystemTime() 输出的系统时间(由一枚“LARGE_INTEGER”型指针引用)

是从 1601年1月1日开始至当前的“100 纳秒”数量,通常约每 10 毫秒会更新一次系统时间。

KeQuerySystemTime() 的输出值是根据 GMT 时区计算的,使用 ExSystemTimeToLocalTime() 可以把它调整为本地时区的值。

既然 1 毫秒 = 1000 微秒 = 1000000 纳秒,只需把这个值除以 10000 即可得到“毫秒数”,再除以 1000 即可得出以秒为单位

的运行时间。

但是事情没那么简单,你想看看:从 1601年1月1日以来到当前 KeQuerySystemTime() 调用经历了多少个“100 纳秒”,无论这个

数值为何,肯定不是 32 位系统上的 4 字节变量能够容纳得下的,所以要么在 64 位 Windows 上调试这段代码,要么必须使用

LARGE_INTEGER 结构体的 QuadPart 字段,该字段实质上是内存中一个连续的 8 字节区域:

以 32 位系统而言,ULONG 型变量最多支持 4294967295 个“100 纳秒”,亦即 429 秒;换言之,阶乘算法运行超过 7 分钟,

就无法用 ULONG 变量(execution_time_of_factorial_algorithm)存储执行时间(该值已溢出所以不正确)。

相关推荐
python开发_常用的python模块及安装方法
adodb:我们领导推荐的数据库连接组件bsddb3:BerkeleyDB的连接组件Cheetah-1.0:我比较喜欢这个版本的cheeta…
日期:2022-11-24 点赞:878 阅读:9,082
Educational Codeforces Round 11 C. Hard Process 二分
C. Hard Process题目连接:http://www.codeforces.com/contest/660/problem/CDes…
日期:2022-11-24 点赞:807 阅读:5,556
下载Ubuntn 17.04 内核源代码
zengkefu@server1:/usr/src$ uname -aLinux server1 4.10.0-19-generic #21…
日期:2022-11-24 点赞:569 阅读:6,406
可用Active Desktop Calendar V7.86 注册码序列号
可用Active Desktop Calendar V7.86 注册码序列号Name: www.greendown.cn Code: &nb…
日期:2022-11-24 点赞:733 阅读:6,179
Android调用系统相机、自定义相机、处理大图片
Android调用系统相机和自定义相机实例本博文主要是介绍了android上使用相机进行拍照并显示的两种方式,并且由于涉及到要把拍到的照片显…
日期:2022-11-24 点赞:512 阅读:7,815
Struts的使用
一、Struts2的获取  Struts的官方网站为:http://struts.apache.org/  下载完Struts2的jar包,…
日期:2022-11-24 点赞:671 阅读:4,898